
Langages de spécification – cours 3
Introduction en logique temporelle

Catalin Dima

Specifying temporal properties

◮ Automata are nice, graphical representations of properties.
◮ Algorithmics for them turn into graph algorithmics.

◮ Essentially reachability and search for strongly connected components.
◮ And various constructions of new graphs from smaller ones.

◮ It’s visual, easy to implement, easy to read, but not very easy to
write...

◮ It’s not easy to guess that an automaton represents a responsiveness
property.

Regular expressions as a specification language

◮ Equivalent with finite-state automata.
◮ Clearly more compact than automata specifications.
◮ But do we really understand what regular expression mean ?
◮ Write a regular expression for

◮ A property of the type p holds forever on.
◮ A property of the type p holds until q holds.
◮ A property of the type there exists a point where p holds.

◮ Wouldn’t it be possible to have some primitives that correspond
to these ?

Linear Temporal Logic defined

◮ Extension of propositional logic.
◮ Hence all propositional connectives are present.

◮ Temporal primitives :
◮ Next : Xφ or © p.
◮ Until : φU ψ.
◮ Globally : Gφ or 2φ.
◮ Forward : Fφ or 3φ.

Linear Temporal Logic defined

◮ Extension of propositional logic.
◮ Hence all propositional connectives are present.

◮ Temporal primitives :
◮ Next : Xφ or © p.
◮ Until : φU ψ.
◮ Globally : Gφ or 2φ.
◮ Forward : Fφ or 3φ.

◮ Past time operators can also be employed :
◮ Yesterday φ held : Yφ or φ.
◮ φ held ever since ψ held : φSψ.
◮ Historically or always in the past φ held : Hφ or �φ.
◮ Once φ held : Oφ or �φ.

Semantics

◮ Models of LTL are runs ρ : N −→ 2AP .
◮ Equivalently, infinite words over the alphabet 2AP .

◮ Each atomic proposition has a truth value at each time point :
◮ p ∈ ρ(0) means p holds at the first time instant of the run.
◮ p ∈ ρ(251) means p holds at the 251th time instant of the run.

◮ Each formula will also be interpreted at each time point along the
run :

(ρ, i) |= p if p ∈ ρ(i)

(ρ, i) |= φ1 ∧ φ2 if (ρ, i) |= φ1 and (ρ, i) |= φ2

(ρ, i) |= ¬φ if (ρ, i) 6|= φ

(ρ, i) |= ©φ if (ρ, i + 1) |= φ

(ρ, i) |= φ1Uφ2 if there exists j ≥ i with (ρ, j) |= φ2

and for all i ≤ k < j, (ρ, k) |= φ1

◮ Similar semantics for the past operators.
◮ Examples...

Semantics (2)

◮ Semantics, continued :

(ρ, i) |= 3φ if there exists j ∈ N with (ρ, j) |= φ

(ρ, i) |= 2φ if for any j ∈ N, (ρ, j) |= φ

◮ But the first modalities are sufficient :

3φ = trueU φ

2φ = ¬3¬φ

Semantics (3)

◮ Other future-time operators : new formulas read as follows :
◮ φ1 W φ2 : φ1 holds weakly until φ2 holds.
◮ φ1 Rφ2 : φ2 releases φ1.

◮ Semantics :

φ1 W φ2 = φ1 U φ2 ∨ 2φ1

φ1 Rφ2 = ¬(¬φ1 U ¬φ2) = φ2 W(φ1 ∧ φ2)

Sample formulas
... and their natural-language statement

◮ Safety formula : Gφ.
◮ Mutual exclusion : G¬(critical1 ∧ critical2).

◮ Guarantee formula : Fφ.
◮ Reachability : F (chass ∧ loup ∧ chevre ∧ chou).

◮ Intermittence formula : GFφ.
◮ Persistence formula : FGφ.

◮ Convergence : FG(Voyager − reaches − Alpha − Centauri).
◮ Request-response formula : G(φ −→ Fψ).

◮ Fairness : G(readyi −→ Fcriticali).

Sample tautologies

◮ Tautology : formula that is true regardless of the truth values
given to the atomic propositions.

◮ Examples :

¬© p ⇔ ©¬p

©p ⇒ 3 p

3 3 p ⇒ 3 p

2(p ∧ q) ⇔ 2 p ∧ 2 q

(3 p ⇒ 3 q) ⇒ 3(p ⇒ q)

◮ Formulas which are not tautologies :

3(p ∧ q) ⇔ 3 p ∧ 3 q

p U(q U r) ⇔ (p U q)U r

◮ To prove they are not tautologies, give a counter-model !

Fixpoints

◮ Until, weak until, release and the others can be defined
“inductively” :

3 p ≡ p ∨©3 p

2 p ≡ ...?

p U q ≡ q ∨
(

p ∧©(p U q)
)

p Rq ≡ ...?

◮ May define least fixpoints and greatest fixpoints
◮ The “equation” for p U q is X = q ∨ (p ∧©X).

◮ Constructing the solution works by replacing X with false and iterating.

◮ The “equation” for ¬(p W q) is X = ¬p ∧ (¬q ∨©X).
◮ Constructing the solution works by replacing X with true and iterating.

Fixpoint LTL

◮ Utilize only © and boolean connectives.
◮ And two fixpoint operators :

◮ µX , least fixpoint, computed starting with X := false.
◮ νX , greatest fixpoint, computed starting with X := true.

◮ What does this mean :
◮ µXνY

(

p ∧©(X ∨ q ∧ Y)
)

?...

◮ Not easy to read...
◮ But more expressive than temporal logic.

Axiomatizing time

◮ Axioms and rules for the propositional part (any deduction
system).

◮ Axioms and rules for © and U :
◮ Distributivity : ©φ ∧©(φ −→ ψ) −→ ©ψ.
◮ Linear time : ¬© φ⇔ ©¬φ.
◮ Fixpoint axiom for until : φUψ ⇔ ψ ∨ (φ ∧©(φUψ)).
◮ Next time rule : from φ infer 2φ.
◮ Until inference (or induction) rule : from φ′ −→ ¬ψ ∧©φ′ infer
φ′ −→ ¬(φUψ).

◮ 2 and 3 can be expressed in terms of U .
◮ A reduced axiomatic system can also be given only for the

fragment with © and 2.
◮ Replace the fixpoint axiom for until with the fixpoint axiom for 2 :
2φ⇔ φ ∧©2φ.

◮ Replace the until inference rule with 2 inference (induction) rule :
from φ⇒ ψ and φ⇒ ©φ infer φ⇒ 2ψ.

The model-checking problem

◮ Given a transition system T = (Q,V ,Q0, δ, π) and a formula φ,
do all the runs of T satisfy φ?

∀ρ ∈ Runs(T), (ρ, 0) |= φ?

◮ Examples :

Infinite words and repeating states

◮ A Büchi automaton is a finite-state automaton,
◮ ... but it works on never-ending sequences of labels.
◮ There is no “final” state, as an infinite word does not have an

end !
◮ There are repeated states F :

Acceptance condition
To accept an infinite word, a run must pass infinitely often through F

◮ This is equivalent with requiring that the run must pass infintely
often through a state from F ! (ain’t it ?)

Algorithms for Büchi automata

◮ Emptiness ?
◮ Check whether some repeated state is reachable,
◮ ... and reaches itself again !
◮ Strongly connected component !

◮ Union ?
◮ Easily adaptable from finite automata !

◮ Intersection ?
◮ Try to adapt the intersection algorithm from automata over finite words.
◮ ... but which are the repeated states ?...

From LTL to Büchi automata

◮ For each formula φ, we may build a Büchi automaton A.
◮ Construction for © p and ¬© p :

p

p,Xp

∅

Xp

From LTL to Büchi automata (2)

◮ Construction for p U q and ¬(p U q).

p, q, p U q

p, p U q

q, p U q

p

∅

◮ But a Büchi acceptance condition must be added ! Which one ?

Model-checking algorithm

◮ Construct the automaton A for ¬φ.
◮ Spares a complementation step !

◮ Intersect A with the automaton for the system.
◮ Check for emptiness.

	Temporal logic

