Langages de spécification — cours 3
Introduction en logique temporelle

Catalin Dima

Specifying temporal properties

» Automata are nice, graphical representations of properties.

» Algorithmics for them turn into graph algorithmics.
» Essentially reachability and search for strongly connected components.
> And various constructions of new graphs from smaller ones.
» It's visual, easy to implement, easy to read, but not very easy to
write...
> It's not easy to guess that an automaton represents a responsiveness
property.

Regular expressions as a specification language

Equivalent with finite-state automata.
Clearly more compact than automata specifications.
But do we really understand what regular expression mean ?

Write a regular expression for

» A property of the type p holds forever on.

» A property of the type p holds until q holds.

> A property of the type there exists a point where p holds.
Wouldn't it be possible to have some primitives that correspond
to these ?

vV v v .Yy

v

Linear Temporal Logic defined

» Extension of propositional logic.
» Hence all propositional connectives are present.

» Temporal primitives :
Next : X¢ or O p.
Until : ¢ 1.
Globally : G¢ or O ¢.
Forward : F¢ or < ¢.

vyvyYyy

Linear Temporal Logic defined

» Extension of propositional logic.
» Hence all propositional connectives are present.

» Temporal primitives :
> Next: X¢ or Op.
> Until: pU 2.
> Globally : G¢ or O ¢.
> Forward : F¢ or < ¢.
» Past time operators can also be employed :
» Yesterday ¢ held : Y ¢ or @¢.
» ¢ held ever since 1 held : $S.
» Historically or always in the past ¢ held : H¢ or H.
» Once ¢ held : O¢ or ¢¢.

Semantics

» Models of LTL are runs p : N — 24P,
» Equivalently, infinite words over the alphabet 24P

» Each atomic proposition has a truth value at each time point ;
> p € p(0) means p holds at the first time instant of the run.
» p € p(251) means p holds at the 251th time instant of the run.

» Each formula will also be interpreted at each time point along the

run :
(r1) =P ifp e p(i)
(pvl)':(bl/\(bZ If(p,)|:¢1and(p,)':¢2
(p1) == if (p,1) = &
(f%l)leab if (p,i +1) = o
(p,1) E rlheps if there exists j > i with (p,]) = ¢2

and foralli <k <j,(p,k) E ¢

» Similar semantics for the past operators.
» Examples...

Semantics (2)

» Semantics, continued :

(p,i) E © ¢ if there exists j € N with (p,j) = ¢
(p.i) EDgitforanyj e N, (p.j) = ¢

» But the first modalities are sufficient :

S o =trueld ¢
O¢p=-"-¢

Semantics (3)

» Other future-time operators : new formulas read as follows :
> ¢1 W, 1 @1 holds weakly until ¢, holds.
> P1 R ¢ i Py releases ¢;.

» Semantics :

P1Wor=p1U ¢ VO
D1 R P2 = ~(mp1U ~d2) = 2 W(d1 A ¢2)

Sample formulas

... and their natural-language statement

» Safety formula : Go¢.
» Mutual exclusion : G—(critical; A criticaly).
» Guarantee formula : F ¢.
» Reachability : F(chass A loup A chevre A chou).
» Intermittence formula : GF ¢.
» Persistence formula : FG¢.
» Convergence : FG(Voyager — reaches — Alpha — Centauri).
» Request-response formula : G(¢ — F1).

» Fairness : G(ready; — Fcritical;).

Sample tautologies

v

Tautology : formula that is true regardless of the truth values
given to the atomic propositions.

Examples :

v

“OpeO-p
Op=9<p
OCOop=3Cp
O(pAQ) = OpADq
(Cp=<q)=O(p=q)

v

Formulas which are not tautologies :

O(PpAg) = OpACY
puU(qUr) < (pUa)ur

v

To prove they are not tautologies, give a counter-model !

Fixpoints

» Until, weak until, release and the others can be defined
“inductively” :
Sp=pvO<Cp
ap=..7
pUd=qV (pAO(PUQ))
pRg=..7

v

May define least fixpoints and greatest fixpoints
The “equation” forpi/gqis X =gV (p A O X).

» Constructing the solution works by replacing X with false and iterating.
The “equation” for ~(pWq)is X = -p A (—q V O X).

» Constructing the solution works by replacing X with true and iterating.

v

v

Fixpoint LTL

v

Utilize only O and boolean connectives.

And two fixpoint operators :

> uX, least fixpoint, computed starting with X := false.
> vX, greatest fixpoint, computed starting with X := true.

What does this mean :
> uXvY (P AOMX VAAY)) 2.

Not easy to read...
But more expressive than temporal logic.

v

v

v

v

Axiomatizing time

» Axioms and rules for the propositional part (any deduction
system).
» Axioms and rules for O) and U :
» Distributivity : O¢ A O(¢ —) — O.
Lineartime: = O ¢ & O—¢.
Fixpoint axiom for until : gy < ¥ V (¢ A O(PUY)).
Next time rule : from ¢ infer O¢.
Until inference (or induction) rule : from ¢’ — —¢p A Q¢ infer
@' — =(oUy).
» O and < can be expressed in terms of /.
» A reduced axiomatic system can also be given only for the
fragment with O and O.
» Replace the fixpoint axiom for until with the fixpoint axiom for O :
O¢<=oNOO.
» Replace the until inference rule with O inference (induction) rule :
from ¢ = ¢ and ¢ = O ¢ infer ¢ = O 1.

Yy vV.VvYYyYy

The model-checking problem

» Given a transition system T = (Q,V, Qqo, d,) and a formula ¢,
do all the runs of T satisfy ¢ ?

Vp € Runs(T),(p,0) E ¢?

» Examples :

Infinite words and repeating states

» A Bichi automaton is a finite-state automaton,
» ... but it works on never-ending sequences of labels.

» There is no “final” state, as an infinite word does not have an
end!

» There are repeated states F :

Acceptance condition
To accept an infinite word, a run must pass infinitely often through F

» This is equivalent with requiring that the run must pass infintely
often through a state from F ! (ain’'t it ?)

Algorithms for Biichi automata

» Emptiness ?
» Check whether some repeated state is reachable,
> ... and reaches itself again!
» Strongly connected component!

» Union?
» Easily adaptable from finite automata!

» Intersection ?

» Try to adapt the intersection algorithm from automata over finite words.
> ... but which are the repeated states ?...

From LTL to Biichi automata

» For each formula ¢, we may build a Blichi automaton A.
» Construction for Opand - Op:

(9——o)

From LTL to Blichi automata (2)

» Construction for p{q and =(p q).

» But a Blichi acceptance condition must be added! Which one ?

Model-checking algorithm

» Construct the automaton A for —¢.
» Spares a complementation step!

» Intersect A with the automaton for the system.
» Check for emptiness.

	Temporal logic

